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ABSTRACT

i
A mathematical model is developed to determine the heat

transfer rate of a cylindrical condenser section of a rotating
heat pipe. This model is coupled to an existing code and an
analysis is accomplished on both a smooth and axially finned
condenser. The results of this analysis are compared to those
of a similar analysis performed on a tapered condenser heat
pipe using identicél geometric and operating parameters.

Results of the comparison indicate cylindrical condensers
have a lower heat transfer rate than equivalent tapered con-
densers. This reduction in heat transfer rate is due to a
greater condensate film thickness and is most significant in
a smooth condenser.

Axially finned condensers with triangular and rectangular
fin profiles are also compared. The rectangular fins are
assumed to have adiabatic tips. Results indicate the heat
traﬂsfer rates for these two profiles vary by only 0.40 per

cent for both tapered and cylindrical condenser.
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I. INTRODUCTION

A. THE ROTATING HEAT PIPE

The rotating, wickless heat pipe is a closed container
designed to transfer large amounts of heat from rotating
machinery components. Essentially, it consists of three
main components: a cylindrical evaporator section, a con-
denser section which may be either tapered or cylindrical in
shape, and a fixed amount of working fluid. A typical tapered
rotating heat pipe is shown in Figure 1.

When the heat pipe is rotated about its longitudinal axis
at a speed above a certain critical value, the working fluid
forms an annulus in the evaporator section. Note in Figure 1
that the diameter of the evaporator is larger than the con-
denser. This larger diameter provides a greater liquid reser-
voir. As heat is added to the evaporator, the fluid in the
evaporator will vaporize. The vapor will flow axially towards
the condenser as a result of a slight pressure difference,
transporting the latent heat of vaporization with it. In the
condenser end, external cooling of the condenser causes the
vapor to condense. In the case of a tapered heat pipe, the
centrifugal force due to the rotation of the pipe has a com-
ponent acting along the condenser wall which accelerates the

liquid condensate back to the evaporator to complete the cycle.
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A cylindrical heat pipe, on the other hand relies on a hydro-

E‘ static pressure gradient to drive the liquid condensate back E ii
?' to the evaporator. }i:;?
3 B. BACKGROUND ! _._
The first theoretical investigation into the performance “‘%

of a tapered rotating heat pipe at the Naval Postgraduate }E

School was accomplished by Ballback [Ref. 1] in 1969. He - ,___j
examined the limits in heat transfer controlled primarily by ?a}?ﬁ

fluid dynamic considerations. In particular, he considered rf?}i

the following four limits on heat pipe performance: a) the ifjkﬁ

boiling limit, b) the entrainment limit, c) the sonic limit o ":

and d) the condensing limit. Tantrakul [Ref. 2] calculated :i

these limits for a specific heat pipe. He found the condens- hu. ZE

ing limit was the controlling limitation. In fact, the cal- i ﬁ#?

culated heat transfer rate, based on the condensing limit was ;}?;§

1/10th the heat transfer rate for the next lowest limit, the ;"ﬁié

entrainment limit.
In order to overcome this condensing limitation and thus

increase the heat transfer rate of the rotating heat pipe,

the concept of an internally finned tapered rotating heat

T T

pipe was considered by Schafer [Ref. 3]. Schafer developed
an analytical model for this tapered heat pipe with a trian-

gular fin profile as shown in Figure 2. He assumed one dimen-

sional heat conduction through the wall and fin. Corley [Ref.

4] developed a two-dimensional heat conduction model using a

17

!. . -
. . = 5
e Zaa e e e B SRR NS, IROT ST JEe Sioe. SR ot . SOrT_ TS, SR G TR S St WL SR BU P e TR SRRt




Figure 2.

Axially Finned Condenser Geometry Showing
Fins, Troughs, and Lines of Symmetry
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3} Finite Element Method formulation for the same geometry. To
R! overcome the problem of few nodal points along the fin surface, —
ESE Corley assumed a parabolic temperature profile along the fin _,gi
E?E surface. Tantrakul [Ref. 2] modified Corley's computer code by If;li
. JacE 1o
increasing the number of finite elements from two to three in Jgéis
order to minimize the error at the apex of the fin. Purnomo {J?S
[Ref. 5] developed a two-dimensional Finite Element Method .Efi?
solution to the steady state heat conduction problem using a ——fié
linear triangular finite element. Davis [Ref. 6] modified _?E
Purnomo's code to make it compatible with COPES/CONMIN [Ref. 8], :ﬁ
an optimization program. Davis, in his modification, found a ?i%ig
coding error in Purnomo's [Ref. 5] code, that once corrected, .
permitted Purnomo's corrected code to converge to Schafer's ¢iz f
[Ref. 3] results. ;:‘“}

Purnomo's [Ref. 5] code is limited in that it is restricted

to one particular condenser geometric configuration, namely:

an axially finned tapered condenser heat pipe with a triangular
fin profile. In that tapered finned condenser are difficult
to manufacture, it is doubtful that any widespread practical
application of this geometric configuration will result. Cylin-

drical condensers, on the other hand, can be manufactured with

much less difficulty and might find practical application. I:jﬁia
This being the case, a more practical and beneficial code __;i!
would be one that could analyze cylindrical condenser rotating e .?

heat pipes, both finned and smooth. In actuality, the most :_' ﬂ

beneficial code would be one that could analyze the following ;;:!j
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four geometric configurations: 1) tapered-internally finned, 'iﬁ;
L} 2) tapered-smooth, 3) cylindrical-internally finned, and 4) ";%i
E cylindrical-smooth. The theoretical heat transfer performance : ﬁ;
gﬁ. of the four geometries could then be compafed to determine the if};
ii advantages and disadvantages of each design. An additional ;:#gf
k- advantage would be gained if different fin profiles, i.e.,
E triangular vice rectangular, could also be analyzed and f'.;
E. compared. “"".‘Ji
’-z S
3 C. THESIS OBJECTIVES oo |
El The objectives of this thesis are: —;~;j
Eg 1) Develop analytical models for both cylindrical-smooth i;?gj
: and cylindrical-axially finned condensers. églﬁi
2) Develop solution techniques to these analytical models .3535
that will account for temperature variations along the L.ifﬁ
axial length of the condenser. Ifi%
3) Modify Purnomo's [Ref. 5] code to provide a solution to ‘223
the two-dimensional steady state conduction heat transfer :;?%

problem for the following four geometric configurations:

a) tapered-smooth, b) tapered-finned, c) cylindrical-

smooth, and d) cylindrical-finned.

4) Modify Purnomo's [Ref. 5] code to provide the additional
capability of analyzing a rectangular fin profile with
an adiabatic tip.

5) Obtain and compare results of the four geometric con-

figurations given above for various operating conditions.

20
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II. THEORETICAL ANALYSIS FOR A CYLINDRICAL HEAT PIPE

A. INTRODUCTION

In a cylindrical condenser heat pipe, the radius of the
condenser is constant along the axial length of the condenser.
The flow of the condensate in the absence of vapor-liquid
interfacial shear, is dependent upon the variation in hydro-
static pressure with changes in film thickness along the sur-
face of the heat pipe. Leppert and Nimmo [Refs. 8 and 9]
investigated the phenomenon of film condensation on a flat
horizontal plate. This situation is similar to film conden-
sation on the inside surface of a rotating cylindrical con-
denser. In the case of a cylindrical condenser, the body
force, rather than being the force of gravity, is now the
centrifugal force caused by the rotation of the heat pipe.
Weigenseil [Ref. 10] and Tantrakul [Ref. 2] compared experi-
mental results for a cylindrical condenser rotating heat pipe
with the theoretical results of Leppert and Nimmo [Refs. 8
and 9] and found good agreement. The Leppert and Nimmo solu-
iion was limited in that it was based on a constant surface
temperature along the length of the plate. A rotating heat
pipe, in actuality, has a temperature variation along the
axial length of the condenser which in some cases, may be
significant. This being the case, it was necessary to develop

a mathematical model which would consider the axial temperature
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variation in the solution of the heat transfer analysis. In
the mathematical development that follows, a cylindrical

smooth (unfinned) condenser will first be considered in that
it is the simplest case. The model will then be extended to

include a cylindrical axially finned condenser.

B. THEORY FOR A CYLINDRICAL SMOOTH CONDENSER

1. Assumptions

In developing the theoretical analysis, the following
assumptions are made:
a) Film condensation, not dropwise condensation occurs in
the condenser.
b) The condensate film undergoes laminar flow.
c) Momentum changes through the condensate are small.
Thus, there is essentially a static balance of forces.
d) The vapor exerts no drag in the condensate; there is
no interfacial shear.
e) The temperature distribution within the film is linear.
f) The vapor space is essentially at one pressure, P,.
g) The density of the fluid is much greater than the den-
sity of the vapor. Thus, the density of the vupor can
be neglected.
h) The centrifugal force is much greater than the force
of gravity and, thus, gravity may be neglected.

1) Velocity gradients in the circumferential direction

relative to the pipe wall are negligible.
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4 j) The condensate film thickness is much less than the

E‘ radius of curvature of the condenser wall. Le X

k) The rotating heat pipe is operating at steady state
conditions.

2. Condensate Momentum Equation (X-Direction) ik

@

By applying the above assumptions and the coordirate

system shown in Figure 3, an analysis similar to Nusselt's

Lok B
SRR

In a similar manner, using Figure 3, a force balance

E original film condensation film theory may be used [Ref. 11}. ——.j
E Based on assumption c, a static force balance may be taken ;‘fﬁ
? on an infinitesimal fluid element in the x-direction as shown _;;:;E
E in Figure 3. This force balance results in the following é.agj
- equation: .522
! TPy =0 : 3l - R =0 (eqn 2.1) i 2
3 —
E where T = shear stress (1bf/ft?) ;_Li;%
f p = pressure (1bf/ft?) =0
! X = co-ordinate measuring distance along surface (ft). ?. ;:{
E y = co-ordinate measuring distance normal to surface (ft). o %
E 3. Condensate Momentum Equation (Y-Direction)

l

in the y-direction yields:

ZF=0:QP-+pm2r=0 (eqn 2.2)
sy f

where p. = density of the fluid (1bm/ft?)

[}

w angular velocity (rad/hr)

T radius (ft)
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4. Fluid Velocity

Integrating equation (2.2) between the limits y and
§* for y and corresponding limits of P and ES for pressure

results in the following equation:

P=E & pfwzr (8*-y) (eqn 2.3)

the pressure of the vapor (1bf/ft?), and

=
=
(¢}
-
o
O
]

o
* <
0

film thickness (ft)
Differentiating equation (2.3) with respect to x yields the

following expression for dP/dx:

dp _ dp pewlr dé*
== = EEK % 3 = (eqn 2.4)

Applying assumption (f), (P, is constant, therefore, dP /dx=0)

and substituting equation (2.4) into equation (2.1) yields:

FLa ds*

2
Y pfw T = , (eqn 2.5)
Integrating equation (2.5) with the corresponding limits of
integration y to &* and t to 0 results in the following ex-

pression for shear stress:

*
T = pfwzr %%— [y - 8%] (eqn 2.6)
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But,

T o= U = (eqn 2.7)

where 1 fluid dynamic viscosity (1lbm/ft-hr)

u = condensate velocity (ft/hr)

Substituting equation (2.7) into equation (2.6) and integrating
with the corresponding limits of integration 0 to y and 0 to u
yields:

wazr dG* [Vz
u dx

u=

L - y§*] (eqn 2.8)

The average velocity of the condensate may be found in the

following manner:

el
!

* 6* 2

1 J 1 pew’r de* 2 5

-a_*f Ud}’:?—[ - [Zl-ya ]dy (eqn 2.9)
(o} o} H X

or

pwlr 2
= _ f ds* §*
Z el - 7 [jr] (egqn 2.10)

5. Continuity Equation

The continuity equation for mass flow requires that:

mo= P u A (eqn 2.11)
where m = condensate mass flow rate (lbm/hr)
A =

cross sectional area of the fluid (ft?)
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This can also be written as
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m ='/;6 pfﬁ 2mrdy (eqn 2.12) 5 .'.(
Substituting equation (2.10) into equation (2.12) and inte- ;;ﬁ
grating yields: E Tﬁi

. anfzwzr2 ds* g%’ .;}EE

m = - ¥ I % (eqn 2.13) '}Lﬂﬁ

°®

Differentiating this equation with respect to x yields:

3

-

F dn _ _2mps w?r? d . ds* §*° _
- dx U dx [dx 3 ] (ean 2.14)

6. Energy Equation

.Having applied assumption (e), if the film surface SO
temperature is at the saturation temperature (Tsat) of the :Ei;{%
vapor,énd if the wall of the axial increment is at a given ? .Eh
constant temperature (T, ), then the heat transfer by conduc- ;iiéﬁ
tion of a fluid element of surface area dA is: ;éxég

g dq = kg (TsatG;Tw7 dA feqn 2.153

g where dq = differential heat transfer rate (Btu/hr) 7‘
3 dA = 2mrdx(£t?) e
; ke = thermal conductivity of the condensate film fgi}
‘ (Btu/hr-£ft-F) L_;J;
E 'vuf
E 27 1
l _—
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Ei. T,,, = saturation temperature (degrees F)

ad B = inside condenser wall temperature (degrees F) NP
?f Considering the change of phase and defining Efg as H.,
E the average enthalpy change of the vapor in condensing to a i
ii liquid and subcooling to the average liquid temperature of ;;-;E

the film, then dq is also defined by:

—

dq = hfg dm (eqn 2.16)

N
ol

where hfg = laten heat of vaporization (Btu/1lbm)
€ = specific heat (Btu/lbm R)

p g
AT = (Tsat = Tw) “ ".""‘1

hfg hfg L2 (I D Cp =L AT

LB B A A8 2
b .‘-‘u il
L B

Rearranging equation (2.16) and substituting this equation into

equation (2.15) yields:

. LA LR AR
DRSNS ~ (AN |
.
@

- di _ ke(Tear - Ty) 27r R |
i &= ? (eqn 2.17) e
F ~@
3 k30 |
; Finally coupling the energy and continuity equations result in i .’ﬁ
3 the following differential equation: ol
s,...:...,i‘
* 0 * %3 _ 5 ':;
%— [ji § ] =- Skffziat Ty)u (eqn 2.18) el
X )

Peiwlr Hfg .
—
Equation (2.18) can be solved using the Finite Element -’i
Method to provide the film thickness profile along the axial Q': v
o T ]

g 4
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length of a cylindrical condenser. Appendix A provides a

detailed description of this solution. Once the film pro- —-—;
file is known, a steady state two-dimensional heat conduc- :Jfﬁ
tion analysis can be performed. %1
7. Determination of Heat Transfer Rate }LE%
Assume that the cylindrical condenser section of the :
rotating heat pipe is divided axially into a number of incre-
ments. Then for any axial increment of a cylindrical conden- ——
ser, the differential heat flux can be determined by the ;fg&i
following expression. fé{
—
dq! = (Tsat - Tx) (eqn 2.19) -
§ , thick . 1 T
f Ky Next ;;ﬁb
where To = ambient temperature (degrees F) .
thick = thickness of the condenser wall (ft) . éfﬁ?
ky, = thermal conductivity of the wall material ?t;:

(Btu/hr-ft-F) 0
hext = external heat transfer coefficient iiﬁ;
_ 2- .-"‘.
(Btu/hr-£ft°-F) _—
Note the three terms in the denominator are the thermal re-
sistances of the film, wall and external convection respectively.

The differential heat transfer rate for any increment @

can be found by the following relationships:

dq = dq! -« 2wrdx (eqn 2.20)
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or

di= E;r(ng? - Ty) dx (eqn 2.21)
8§ L, thick , 1
b 13 h

£ W ext

Equation (2.21) represents the total heat transfer rate for
an incremental section of width dx. To find the total heat
transfer rate for the entire cylindrical condenser, the in-
cremental heat rates must be summed over the entire length
of the condenser. Therefore:

NDIV

2 dq (eqn 2.22)

Uotal i=1

where NDIV = total number of axial increments.

C. THEORY FOR A CYLINDRICAL AXIALLY FINNED CONDENSER

1. Assumptions

Referring to Figure 4, it is obvious that the analysis

< of a cylindrical internally finned condenser is more compli-

cated due to the mass flow from the fins into the trough

- 4 AEAEAD

: region between the fins. For this reason, in addition to
g the simplifying assumptions made for the smooth condenser
E which are listed in the previous section, the following
E assumptions must also be made:

a) Referring to Figure 5, the mass flow along the fin sur-

face does not flow axially in the x-direction, but only

30
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along the surface of the fin in the z-direction into the

i R
Y T g om0 -'.'

‘.’ ‘-.'. Al
B 0,

trough. Thus, mass flow in the axial direction is only - i;
{ permitted in the trough region between the fins. This RSN
o is a reasonable assumption in that the film thickness il

>
.
Cil
v
3
’

W
¢
K
: |
@

along the fin surface is very small in relation to the
film thickness in the trough. This being the case, the x:f.
ﬁ: hydrostatic force in the x-direction on a fin fluid ele- R
E. ment will be much less than the centrifugal force com- ‘@
:& ponent in the z-direction on that same fluid element 5

forcing that fluid element into the trough. o

ﬁ; b) Just as in the axial direction, there is no pressure ; ”Qj
change along the surface of the fin in the z-direction.

c) It will be assumed that the temperature along the con- ‘:
vective surface of the fin is at a constant value (Tavg)' ;_;ii
This average fin surface temperature is the arithmetic |
average of the fin tip temperature and the fin base sur- i
face temperature where the fin intersects with the wall gshé
of the condenser. This is a valid assumption if the fin '??;
section is divided into a sufficient number of finite ﬂ{j;i
elements. Purnomo's [Ref. 5] results indicate a less ym;jg
than one degree variation, even for very large fin half ! ig
angles. This variation in temperature will have an in- :}
significant effect on film thickness along the surface -
of the fin and can be neglected by using an average é
value. .T:g
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2 2. Mass Flow in the X-Direction
Rﬂ As a result of assumption (a), the resulting momentum T"f;
3 equation in both the x and y directions as well as the equa- .
A tions for velocity and mean velocity are identical to those ﬁ-jﬁ
h developed in section B for the smooth condenser and will not - «T&
E be redeveloped here. Looking now at mass flow in the x-direc- 2 18
] tion which is limited to flow only in the trough, the mass L5
Jl ) flow rate is given by the following expression: ' “‘3
= -
%‘.. .:_‘.
L . pfzwzr ds* ) ) e |
L Meotal = - §* (es* + §* tana) (eqn 2.23) R
- 3u dx pssy
Fe o
- |
:2 where o = fin half angle (radians) {i
k. ¢ = width of the trough (ft) }
?! Note that the quantity in parentheses is the cross sectional ik
¥ area of the film condensate in the trough (See Figure 4). :.:
Taking the derivative of equation (2.23) with respect to x 1
yields the rate of change of mass flow in the trough for a o
given axial increment. o

o -2
diMtotar _ P97 4 .ds*

==
dx 3u dx dx

3

(ed*°+ §**tana)] (eqn 2.24)

Equation (2.24) represents the rate of change of the

total mass flow rate with respect to x in the x-direction.

“u "
e
@
- .]
;
R
. .‘ J

|
4

(3

1
_-‘_'_! Aty 250} . M

This equation must be coupled with the energy equations for
the fin and trough to develop a representation of the film

profile in the trough.
34




3. Mass Flow in the Z-Direction

Examining an infinitesimal fluid element on the sur-
face of a fin for any axial increment of width Ax, as shown

in Figure 6, the momentum equation in the z-direction becomes:

aTa aP

—— = A 2
5y = pew?TCcosa (eqn 2.25)
E! where t. = shear stress in the z-direction (1bf/ft?)

.
N
1]

co-ordinate measuring distance along the surface
of the fin (ft)
Neglecting dP/dz based on assumption (b), and integrating

equation (2.25) from t, to 0 and y to § yields:

A

¥z R pfmzrcosa(d-y) (eqn 2.26)
where w = fluid velocity in the z-direction (ft/hr)
§ = fin film thickness along the surface of the fin (ft)

Note, § , the fin film thickness should not be confused with

3 6*, the film thickness in the trough. Integrating equation

E! (2.26) from 0 to w and 0 to y provides the following expression
for fluid velocity:

pfézrcosa

2
W = T (§(z)y - %,) (eqn 2.27)

R "q’y;r..plt;..‘.;

L st b e
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1R
E; This relationship may be used to find the average fin fluid
j! velocity w:
1 (8 pfwzrcosa §(z)?
- W = —f wdy = (eqn 2.28)
§Yo 3u

The mass flow rate in the z-direction along the surface of the

fin for a given axial increment is given by:

mfin = hWdA (eqn (2.29)

where dA = the cross sectional area of the fluid flowing along
the fin surface (ft?)
Substituting equation (2.28) into equation (2.29) yields:
pfzwzrcosa §%(z)dx

2 (eqn 2.30)
3u

Mein

This equation is identical to equation (15) of Schafer's [Ref.
3] analysis if the condenser cone half angle (f) is set equal
to 0 which is the case for a cylindrical condenser.

4. Energy Equation for the Trough Condensate

An energy balance on an infinitesimal fluid element in

the trough of an axial increment of width dx with surface area

€ * dx yields the following expression for heat transfer by

AT

. conduction:

L‘-

3 2 ReglT - T. )edx

g dqtrough ;4 szattéjE w (eqn 2.31)
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Since the fin condensate mass is assumed to flow only in the

L’“ - -——

s ®

908 =
i

2 Note also, that the trough heat transfer rate is given by: )

B2 5

n - F.. ai e

Ey dqtrough hfg dmtrough (=g’ 2.52) "

F i

ii Combining equations (2.31) and (2.32) and dividing by dx re- B

& sults in the following: w,
X

- it

. . e

o dm k(T - T e D

ﬂ. trough _ “f sat* W (eqn 2.33) ]

:; Equation (2.33) is an expression for incremental change in mass _h"j

F. flow rate with respect to x due to condensation in the trough ; i

region. :;

Ei 5. Energy Equation for the Fin Condensate ij

bl

An energy balance on a differential element of surface _i

area dx-dz yields the following relationship for differential fﬂj

X . . |

" heat into the fin: R

; -8

'

R (T - Te..(2))dxdz i |

f* sat fin 1

dqe... = h dh,.. = (eqn 2.34) &

fin fg = LW 5(z) -

=

: . b

where Tfin (z) = fin surface temperature at some position z +

.‘:..!

along the surface of the fin (degrees F) '3

N

- @
o
K z-direction, equation (2.30) is differentiated with respect : ]
L to z and substituted into equation (2.34). After substitution 1
l‘ 1
b and rearrangement, the following equation results: .:
. - -
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k(T = Tor.anGZibldz
6(2)3d6(2) f* sat fin (eqn 2.35) = =
pfzwzr hfg cosa 1
Applying assumption (c¢) i.e., T.. (z) equals Tavg for .;EZS
{ I J

all z and integrating equation (2.35) from 0 to § and 0 to z

yields the following relationship for fin film thickness & (z):

b 2

k 1/4 .__:.__J
L] §(z) = [4 fe(Tsat - Ta"g)uz] (eqn 2.36) s
; pfzmzr hfg cosa ' o
: i
E where Tavg = average fin surface temperature (degrees F). giiﬁij

Substituting equation (2.36) into equation (2.30) and solving

for rate of change of mass flow rate of the fin with respect

to x for an increment of width dx yields:

1/ s .{Qﬂi’

it QNG Ll [4 Kt (Tsae - Tavg)“z*] (eqn 2.37) e

; dx 3u pelw?r hfg cosa L :::§
4 %
é where z* = z-§*/cos(a). Note, z* is the distance along the :zifii
; surface of the fin from the fin tip to the trough film thick- L_”:;é
: ness (6*?. Note also, that the right hand side of equation : ;
i (2.37) is multiplied by two; this accounts for mass flow from f
E the fins on both sides of the trough. ;ﬁ !i
E 6. Continuity Equation E
For any axial increment of length dx, continuity dic- f_;jg

tates that: ) ; ;jg

E
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i dm .. dm
total _ fin , “Ttrough (eqn 2.38)

dx " dx dx

d

Substituting equations (2.24), (2.33) and (2.37) into equation

(2.38) and rearranging yields:

O P - T Jue
S* d [d(S* (86*3+ G*Iotana)] = f* " sat W
dx ‘dx R
f fg
o — 3/u
T - T uz
- 28*cosa [ £~ sat gyg ] (eqn 2.39)

pfzwzr hfg coso

Equation (2.39) can be solved using the Finite Element Method
formulation provided in Appendix A. The solution of this equa-
tion provides the film thickness profile along the axial leﬁgth
of a cylindrical finned condenser. .

7. Determination of the Heat Transfer Rate

Once the film profile has been determined within the
trough, the local convective heat transfer coefficient can be
found for the trough using the following relationship:

k

= i
h(x)trough 2 ?—E}-{;‘ (eqn 2.40)

In a similar manner, the local heat transfer coefficient along

the surface of the fin can be found by:

k
£
h(z)fln = m)- (eqn 2.41)
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The differential heat transfer rate for any fin section, as ?

shown in Figure 4, of axial incremental length dx is: "-f;

a) for the trough: .ﬁfg

. (T_.., - T.)edx T e
. - =3 Sat W r '.._“
i-. dqtrough h(x) (eqn 2.42) 33;

trough

where €°+dx is the surface area of the trough, and

b) for the fin surface: LX) 2T

% (T - T . )dxdz _f;;}
dqfin E ZJ[ ° =2t 28 (eqn 2.43) LS|
° h(z)fin :

where ﬁ)is the surface length of the fin.

The total differential heat transfer rate per axial increment g

- . )
is found by summing equation (2.42) and (2.43) for the total Ef_;j
number of fins. That is: ;"?

NEFIN L.

dA¢ta1 = § (dqfin X dqtrough) (eaqn 2.44) R

where NFIN is the total number of axial fins. o

In a similar manner, the total heat transfer rate for the entire X
finned condenser can be found by the following relationship:

NDIV -

otal = i dd¢0ta1 (eqn 2.45) i

where NDIV is the total number of axial increments. *;ég
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III. COMPUTER CODE DESCRIPTION

A. GENERAL DESCRIPTION OF CODE

The computer code consists of a main body and eight sub- B
{;. routines. Basically, the code which is provided in Appendix 3;?3;
E C is a modification of Purnomo's [Ref. 5] code. The function :
g! of each subroutine used in the code is as follows: -‘?;

= a) "CORRES" established the correspondence between the
local and global nodal points used in the Finite Element

Method solution for the two-dimensional steady state e

W v
.ﬂ CACADIY

ol e ;;;n:
SR Sk o

Y
O
)

heat conduction problem. In so doing, 'CORRES" also

numbers all elements and nodal points inthe finite ele-

ment model and assigns local nodal points to each of the

elements. In addition "CORRES" also defines major ele- {iﬁ!i

ment numbers used in other subroutines as control f'}:

parameters. ‘ﬂﬁ

b) '"COORD" defines the x and y coordinates for all nodal :?Eii

points in the finite element heat conduction problem 3

model. :
,2 c) "DLSTAR" determines the film thickness (§*) on the sur- .f@ -
i face of a smooth condenser or in the trough in a finned g
& )
. condenser. Rty )
b d) "HTCOEF" determines the heat transfer coefficient for
¢ all convective surface elements. i
: S
L 42 !
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e) '"FORMAF" formulates the Finite Element Method equations

{ 98 e % o
il

.ﬂfv

Al
Bt
3

‘ b e fUs o

for the two-dimensional steady state heat conduction R
problem.
f) '"BANDEC" is an equation solver for a symmetric matrix

which has been transformed into banded form. '"BANDEC" L

Bk e e )
. [T R
. L e A A
0 . » Pt

e e

e will return the solution to the two-dimensional heat ;:

;i conduction problem.

a. g) "HTCALC" determines the elemental, incremental and total T_T;

2 heat transfer rates. i

3 h) "DELCRV" determines the condensate film profile in a cyl- 73;2

E; indrical condenser. ~ ;;.

%} Two additional Naval Postgraduate School computer library _g“§i

?3 routines are also used in the code: ?

¢ a) "DPOLRT" is a nonIMSL double precision library routine ? x;
that determines the roots of a real polynomial. This fﬂz
routine is called by "DLSTAR" to determine the film 2}fnf
thickness for the succeeding increment in the analysis o—

of a tapered condenser.

b) '"LEQTZF'" is an IMSL double precision libary routine that

solves a set of simultaneous linear equations. This
routine is called by "DELCRV" to solve the Finite Element

Method equations for the cylindrical condenser film pro-

file problem. The resuiting film profile is then used L@

[Q in the heat conduction analysis. -0

In order to use the computer code to analyze heat transfer S
L in a rotating heat pipe, nine data cards are required. A user's Lol
: ?
b ~
b oo -
b 43 i
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guide describing these data cards and required input is pro-

vided in Appendix B. The input data, describing the geometric & -
configuration of the rotating heat pipe as well as the operating
parameters determines which solution technique is utilized in the

analysis. The solution technique for each of the four con- 2 '4;

denser geometries, i.e., tapered-smooth, tapered-axially finned,
cylindrical-smooth and cylindrical-axially finned is different.

E] In all cases however, the Finite Element Method is used to P e
solve the two-dimensional steady state heat conduction problem.

This solution is the one developed by Purnomo [Ref. 5] and

& has not been modified. Details of the development of this ;_’;’
solution are described in detail in Purnomo's thesis [Ref. 5] o

and will not be repeated here. This being the case, each of

ﬂ the four solution techniques will now be discussed in detail. . :.

3 B. INTERNALLY FINNED TAPERED CONDENSER SOLUTION

i The complete development of this solution technique 1is -"f
S—

provided in Purnomo's [Ref. 5] thesis and will not be rede-
veloped. When an equation is required for clarity, the equa-
tion in final form will be provided. Where there is a

modification to Purnomo's [Ref. 5] code, this modification

T r ey,

E will be noted. ‘;ﬁ
X The condenser of the internally finned-tapered condenser 1;'
E is divided into NDIV axial increments. These axial incre- 5 f:f
E ments are then subdivided circumferentially into ZFIN number ¥£
t of subincrements where ZFIN is the total number of fins. - L;

; 44
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These subincrements are then divided in half to form the

;I basic symmetric unit, one-half of a fin-trough section as - .;3
shown in Figure 1. This unit section is then divided into %

{ﬁ. a number of linear triangular elements. The number of ele-

ill ments depend on the input parameters. The only limitation l'éi:

. is that the number of system nodal points must not exceed

" ’
.

100; otherwise, certain variables, e.g., x and y, would

exceed allotted storage values. Figure 7 shows a unit
section subdivided iato 25 elements. After this unit is
subdivided, each nodal point is assigned an x and y coordi-
nated based on the geometric input parameters.

To start the iteration, two initial values are required:
1) an initial temperature for the nodal points along the
internal convective boundary, and 2) an initial trough film

thickness (§*). The initial temperature is provided as an

Eﬁ input parameter and the initial trough film thickness at the

!! first increment is provided by a relationship taken from an )

E{ analysis by Sparrow and Gregg for condensation on a rotating ,f;';

z disk [Ref. 12]. o

E; Once these values are known, the heat transfer coeffi- ﬁmgé
cient for the internal convective surface elements are found ;

PR

- using the following relationships:

A

1/ .

k koo 2w? @r+xsinf)h . cosfcosa 3

h(z) g5y = ?%?) - [ e o (eqn 3.1) ;
.4u(-AA-z /3-BB.z /2+(Tsat-T1)z -

R Y

3
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Figure 7. Axially Finned Condenser Symmetric Section Sub- SECAN
divided into 25 Linear Triangular Finite Elements 3
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}E where x = distance from condenser end (x=0.0) to midpoint uffi;
%g of increment (ft) ;_;;_
E& T, = fin apex temperature (degrees F) y :"
E? AA, BB = constants in the parabolic temperature determined i i
i- by a Langrangian fit. ‘;_;i

i For the trough surface elements: -:;
K bty
5 h(X) trough = F¥(R) (eqn 3.2) 3

These heat transfer coefficients, along with the thermal

conductivity and x and y coordinates of the nodal points are ';gti
used to form the Finite Element Method equations for the two- E;J;i
dimensional heat conduction problem. The equations are then : &
solved to yield a temperature distribution in the symmetric ;:fEE
section. ;_;éq
The above iteration is repeated, where, now the solution :“?G?
temperature distribution from the previous iteration 1is used - o 31
to calculate the heat transfer coefficients along the con- ﬁ.“iﬁ
vective surface fin elements as well as a new §* using Sparrow's :fifé‘
and Gregg's relationship [Ref. 12], This new &*, in turn, is ???
used to determine the heat transfer coefficients of the trough 5»421
elements. 'ﬁ
Again, the Finite Element Method subroutines will yield i

a temperature distribution for the symmetric section. At 4 !%
this point, the nodal point temperatures are checked for con- . %
vergence using the following relationship: i
@

»
Lod
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T s o
Max | —ted — 12J°1 |\ ¢ CRIT i = 1,2,...NSNP  (eqn 3.3)

where NSNP = number of system nodal points

1 = present iteration

j=1 previous iteration

CRIT = convergence criterion

If this convergence test is successful for all nodal points,

the increment is considered solved. If any one nodal point
fails, the iterative process is repeated until convergence 1is
met. The convergence test in equation (3.3) is different than
the one used by Purnomo [Ref. 5] in his thesis. Purnomo com-
pared incremental heat transfer rates per unit of condenser
length, Qi’ rather than temperature as 1is done in the modified

code.

If convergence is met, the heat transfer rate is determined.

From this heat transfer rate, the incremental mass flow rate is

determined by the following equation:

. . 2QiAx
Miotal ~ Efg (eqn 3.4)

where Qi = heat transfer rate per unit length (Btu/hr-£ft)

Ax incremental width (ft)

Using this value of incremental mass flow rate determined
by equation (3.4), the following equation is used to calculate
the subsequent interval's trough condensate film thickness (g§*)

with a polynomial rootfinder subroutine:
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i p?w? (r+xsing) 6*2 (x)sing(8* (x) e+6*2 (x) tana)

. Mtotal 3 T
(eqn 3.5) |
where € = trough width (ft) i
S0 |
=3 i
This resulting value of 8§*(x) is then defined as the trough f;;;-
|
o film thickness for the next increment. In addition, the solu- =
- tion temperature distribution from the previous iteration is R
i. used as the starting temperature distribution for the next '*%;:
- increment. _ BROR
1¥ This iterative process at each increment is repeated until ::lf}
> : . : : e
@ convergence is met, and, is continued at each increment until = -

= XYY
b the entire length of the condenser has been transversed. In- A
j& cremental heat rates are then summed to yield the total heat _}iﬁﬁ
transfer rate. That is: Ti;;:
P e
BN
NDIV R

= 2% % e e
Qtotal 2*ZFIN izl Q;-bx (eqn 3.6)

where ZFIN is the total number of axial fins.

Once the total heat transfer rate has been determined, the

problem is solved and pertinent data is provided as output.

C. SMOOTH TAPERED CONDENSER SOLUTION 7 'JE
The heat pipe condenser is divided into NDIV number of ' .:E
axial increments as in the finned-tapered condenser solution. o .:
These axial increments are then subdivided into 360 segments *Eii
of equal length; these segments are the basic symmetric unit. ;Efii
9 ;
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This unit section, is divided into a number of linear tri-
angular elements with the same limitation as before; the RCAN
number of system nodal points must not exceed 100. The ;;14%
system nodal points are then assigned x and y coordinates
based on the input geometric parameters. A

To start the iterative process, as in the finned-tapered
case, the initial value of temperature which is an input
parameter is used to solve for the initial value of fin };;;4
thickness (8*) based on the Sparrow and Gregg analysis [Ref.

12]. T

Once this initial value of 8* is known, the heat transfer
coefficients for the internal convective elements can be
determined using equation (3.2). These heat transfer coef-
ficients are used in the Finite Element Method equations.

The equations are solved yielding a temperature distribution.
The iteration is repeated until convergence is met, just as
in the finned-tapered case.

When convergence is met, that is equation (3.3) has been

satisfied, a new film thickness §*(x) can be found by one of

the following equations for §*(x):

x il % 3 1l s* 2
Sh [&-]" - 3 Dr [§x—] - g Rev, [&-] -1

0 (eqn 3.7)

3 X ~
or 5
gy P
= = Flectie i
Shy I x] 1=0 (eqn 2.8) )
s
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b

;j or e - y who

- & u .

,tﬂ sh(x) = L _sat [1 - {—F—1} i (eqn 3.9)
e przwzrsinzﬂhfg (r+xsinf)

2,012 . 3
e (w r‘g)SlnﬂEfgx

where Sh =
buke(Tgae - Ty
p.t_h. x*cosf
pr = L Vv fg
Wke(Tgae - T
p.v cosf
Rev = _f____.._
H
g = acceleration due to gravity (ft/hr?)
v = vapor velocity (ft/hr)
T, = local wall temperature (degrees FO
By = shear stress vapor-liquid interface (1bf/ft?)

Equation (3.7) defines the film thickness distribution for
a smooth tapered rotating heat pipe derived by Daniels and
Al-Jumaily [Ref. 13]}. This equation takes into account the

drag effects of counter-flowing vapor. Equation (3.8) is a

modification of Equation (3.7) neglecting the drag losses.
Equation (3.9) was developed by Ballback [Ref. 1]. This equa-
tion also neglects drag. ERLE
Depending on a particular control parameter which is part
of the input data (See Appendix B) one of these equations is

used to solve for the film thickness (8*(x)) for the next
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increment. In addition, the solution temperature distribution
from the previous iteration is used as the starting temperature Sl
distribution for the next increment.

This iterative process at each increment is repeated until

convergence is met, and is continued at each increment until £ "‘J

- bt
. the entire length of the condenser has been transversed, just :
< X
EE as in the finned-tapered case. Total heat transfer rates are : ;j
7 then determined by summing the incremental heat transfer rates e m;i
8
;‘ for the entire length of the condenser by the following .ffi%
: relationship: R
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